
Principles of L-Systems

The Algorithmic Beauty of Plants:
http://algorithmicbotany.org/papers/abop/abop.pdf

To see the full turtle sequence being generated by an L-System open up an HScript Textport (​alt+shift+t)
And type:

 opinfo /pathto/L-System

You can drag the L-System node into the textport to get the path automatically.

Turtle sequence
The basic L-system commands are used to draw a line or series of lines. Each command follows on from the
last, so as to draw a line through space. It helps to imagine a point (or turtle) moving forwards, and rotating left,
right, pitching up and down, and rolling about its axis.

Line Drawing Commands

F

Move forward a step, drawing a line connecting the
previous position to the new position.

f Move forward without drawing.

H Move forward half a step, drawing a line connecting
the previous position to the new position.

h Move forward half a step without drawing..

G Move forward but don’t record a vertex distance

Without further information these commands use the
Value ‘step size’ for length

F(l,w,s,d
)
f(l,w,s,d)
etc

For each of the above commands (l,s,w,d) assigns
distance l of width w using s cross sections of d
divisions each.

Not all of these values need to be set eg.

F(l) creates a line of distance (length) l

F(l,w) Creates a line of distance l and width w

Rotation Commands

+ Turn right a degrees.

- Turn left a degrees (minus sign).

& Pitch up a degrees.

^ Pitch down a degrees.

\\ Roll clockwise a degrees.

/ Roll counter-clockwise a degrees.

| Turn 180 degrees

* Roll 180 degrees

~ Pitch / Roll / Turn random amount up to a degrees.
Default 180.

$(x,y
,z)

Rotates the turtle so the up vector is (0,1,0). Points
the turtle in the direction of the point (x,y,z). Default
behavior is only to orient and not to change the
direction.

Without further information these commands use the
Value ‘Angle’ to determine the angle rotated in each turn

+(a)
&(a)

The (a) value is used to set the angle

http://algorithmicbotany.org/papers/abop/abop.pdf

Adding incremental changes (eg. per
generation)

" Multiply current length by Step Size Scale.

! Multiply current thickness by Thickness Scale.

; Multiply current angle by Angle Scale.

_ Divide current length (underscore) Step Size Scale.

? Divides current width by Thickness Scale.

@ Divide current angle by Angle Scale.

' Increment color index U by UV Increment's first
parameter.

Increment color index V by UV Increment's second
parameter.

Appending (s) can be used to override the step
size/thickness/angle etc.

Geometry Commands

J
K
M

Copy geometry from leaf input J, K, or M at the
turtle’s position

J(s,x,a,b,c)
etc

The geometry is scaled by the s parameter
(default Step Size) and stamped with the
values a through c (default no stamping).
Stamping occurs if the given parameter is
present and the relevant Leaf parameter is set.
The x parameter is not used and should be set
to 0.

{ Start a polygon

. Make a polygon vertex

} End a polygon

g(i)

Create a new primitive group to which
subsequent geometry is added. The group
name is the Group Prefix followed by the
number i. The default if no parameter is given
is to increment the current group number.

a(attrib, v1,
v2, v3)

This creates a point attribute of the name attrib.
It is then set to the value v1, v2, v3 for the
remainder of the points on this branch, or until
another a command resets it. v2 and v3 are
optional. If they are not present, an attribute of
fewer floats will be created.

etc.

Variables representing Values

a The LSystem angle parameter.

b The LSystem b parameter.

c The LSystem c parameter.

d The LSystem d parameter.

g Initially 0. After that it is set to the age of the current
rule.

i The offset into the current lsystem string where the
rule is being applied

t Initially 0. After that it is set to the iteration count.

x, y, z The current turtle position in space.

A The arc length from the root of the tree to the
current point.

L The current length increment at the point.

T The LSystem gravity parameter.

U The color map U value.

V The color map V value.

W The current width at the current point.

Behavioural Commands

% Cut off remainder of branch

[Push turtle state (start a branch)

] Pop turtle state (end a branch)

: Conditional eg. A: in(x,y,z) = FF

:33 Probability eg. A=FF:33 happens 33% of the
time

= Replace left with right

Branching
If turtle commands are placed inside square brackets [] the drawing point of the sequence jumps back to its
position before the brackets. This way branches can be drawn from a main trunk

In the first example, only an initial premise string is used, consisting of F+-
and []

Premise FF​[​+F-F+F​]​F-F​[​F-F-F​]​+F​[​+FF-F​[​+F+F​]​F-F-F​]​F​[​-F​[​+F+F-F-F​]​F-F​]

angle 90

I have coloured the lines to show the main trunk, branches and nested
branches. If I remove the branches is square brackets we are left with the
simple instructions for the main trunk ​FFF-F+FF

Edge Rewrite

Each edge F is replaced by a new sequence. Here it is replaced by a line with a triangular detour which is
drawn by the turtle sequence F+F--F+F
Every generation all the Fs are replaced again.

Premise F

Rule 1 F=F+F--F+F

angle 60

To keep the overall size constant
divide the size of each new F by 3:

Premise F(1)

Rule 1 F(i)=F(i/3)+F(i/3)--F(i/3)
+F(i/3)

angle 60

And here a different sequence FF++F++F+F++F-F inserts a diamond shape:

Premise F

Rule 1 F=FF++F++F+F++F-F

angle 60

Edge Rewrite Examples from​ The Algorithmic Beauty of Plants p9 - p11.

Quadratic Koch
Generations:​ 2
Premise:​ F-F-F-F
Rule1:
F=F+FF-FF-F-F+F+FF-F-F+F+
FF+FF-F
Angle:​90

Quadratic Snowflake
Generations:​ 4
Premise:​ -F
Rule1:​ F=F+F-F-F+F
Angle:​90

Koch Curve a
Generations:​ 4
Premise:​ F-F-F-F
Rule1:​ F=FF-F-F-F-F-F+F
Angle:​90

Koch Curve b
Generations:​ 4
Premise:​ F-F-F-F
Rule1:​F=FF-F-F-F-FF
Angle:​90

Koch Curve c
Generations:​ 3
Premise:​ F-F-F-F
Rule1:​F=FF-F+F-F-FF
Angle:​90

Koch Curve d
Generations:​ 3
Premise:​ F-F-F-F
Rule1:​F=FF-F--F-F
Angle:​90

Koch Curve e
Generations:​ 5
Premise:​ F-F-F-F
Rule1:​F=F-FF--F-F
Angle:​90

Koch Curve f
Generations:​ 5
Premise:​ F-F-F-F
Rule1:​F=F-F+F-F-F
Angle:​90

Node Rewrite
Instead of replacing an edge we can replace an unused character in our sequence with a new sequence. We
can insert these characters anywhere. Commonly used characters are A, B, C, X as they are not otherwise
used as Turtle commands.

In this example a node A is inserted at the end of
the first F line (FA) In the second generation it is
replaced with a triangular detour, and another A
is added to the end (+H--H+A) and this is
repeated to keep adding the same shape over
and over again. Note H is a line half the size of
F.

Premise FA

Rule 1 A=+H--H+A

angle 60

If the initial premise had been AFA the zigzag
shapes would have been inserted at both the
start and the end of the lines

In the second example a node A is inserted at the end of the first F line (FA). In the second generation A is
inserted (to allow further iterations of the sequence) then the point turns 30 degrees, then a branch containing
a half line is drawn, and the drawing point jumps back to just after the 30 degree turn.

Premise FA

Rule 1 A=A-[H]

angle 30

After each branch the angle (-) is added
because it is outside the brackets, but the
distance travelled by H is ignored.

This example is a slightly simplified version of the Houdini default L-System settings. I have coloured each
generation with a different colour to make it clearer how the tree grows.

This tree uses two rules, but it is pretty
straightforward. Rule 1 establishes the
branches. Rule 2 uses the B character to
insert a rotated line at each branch.

Premise FFFA

Rule 1 A=[B]////[B]////[B]

Rule 2 B=&FFFA

angle 28

Branching Structures
from​ The Algorithmic Beauty of Plants p25. ​Also available as defaults ‘2D Plants’ in Houdini
Figure 1.24: Examples of plant-like structures generated by bracketed OLsystems. L-systems (a), (b) and (c)
are edge-rewriting, while (d), (e) and (f) are node-rewriting.

a
Generations:​ 4
Premise:​ F
Rule1:​ F=F[+F]F[-F]F
Angle:​25

b
Generations:​ 5
Premise:​ F
Rule1:​ F=F[+F]F[-F]F
Angle:​20

c
Generations:​ 4
Premise:​ F
Rule1:​ F=F[+F]F[-F]F
Angle:​20

d
Generations:​ 6
Premise: ​X
Rule1:​F=F[+F]F[-F]F
Rule2​:F=FF
Angle:​22.5

e
Generations:​ 6
Premise: ​X
Rule1:​X=F[+X][-X]FX
Rule2​:F=FF
Angle:​35

f
Generations:​ 6
Premise: ​X
Rule1:​X=F-[[X]+X]+F[+FX]-X
Rule2​:F=FF
Angle:​22.5

Symbol variables
You may have noticed that many of the turtle symbols have one or more optional variables after them. Usually
they have a default value which can be edited in the ‘Values’ menu, or this can be inserted manually into the
sequence and can be manipulated using simple maths. This gives us more control over the way the system
changes over the generations.

Symbols Variables Default Value if
no Variable is
specified

Variable Usage

F,f,H,h,G lines
A, B, X etc. nodes to be
replaced

(l,w,s,d)
distance​ l of
width ​w using
s ​cross sections​ of
d ​divisions ​each.

Stepsize Usually you will just be working
with the first (distance) and
sometimes second (width)
variables. Any unused variables
to the right of these can be left
out.

+,-,&,^,\,/,~ (a) Angle in degrees Angle Use to override default angle

J,L,M geometry input

(s,x,a,b,c)
Scale ​s
x is ​unused

Stepsize Scale as a single variable can be
used to override the default
stepsize. If the stamping

a to c are ​stamping
variables​ that can be
used by the input
geometry

variables are needed, then scale
must be set, followed by an
empty or 0 value for x, then any
stamping variables.

", _ (s) override step size
scale

Step Size Scale. Use to override default scale

!, ? (s) override thickness
scale

Thickness Scale
(Tube menu)

Use to override default scale

;, @ (a) override angle scale Angle Scale. Use to override default scale

Examples

Step Size = 0.2
Angle = 30
Premise: FA
Rule1: A=A/[+FBJ]

Step Size = 0.2
Angle = 30
Premise: F​(0.1)​A
Rule1: A=A/[+FBJ]

Step Size = 0.2
Angle =​ 60
Premise: FA
Rule1: A=A/[+FBJ]

Step Size = 0.2
Angle =​ 60
Premise: FA
Rule1: A=A/​(30)​[+FBJ]

Step Size = 0.2
Angle = 30
Premise: FA
Rule1: A=A/[+FBJ​(0.1)​]

Uses Step Size & Angle
from the values menu

The first F uses the
given value of 0.1

Changing the angle
value changes both roll
and turn (/ and +)

But setting the roll value
in the rule keeps the
spacing between
branches constant,
while still changing the
Angle

Here we override the
input sphere geometry
size (J) so it no longer
uses step size. (see
“Input Geometry in
L-Systems” below)

Control variables over time

To set up a variable to change with each generation, you have to declare a value for it in the premise, then use
a variable to represent this on both sides of the rule, and when a node or edge is declared for rewriting,
manipulate this value (ie. add, multiply, divide a constant from it) This will be iterated every time the edge or
node is replaced.
The effect achieved is similar to using the scale values ", _,!, ?,;, @ but with greater control

From the L-System documentation:

To create an L-system which goes forward x percent less on each iteration, you need to start
your Premise with a value, and then in a rule multiply that value by the percentage you want to
remain.

Premise A(1)

Rule A(i)= F(i)A(i*0.5)

This way i is scaled before A is re-evaluated. The important part is the premise: you need to
start with a value to be able to scale it.

Usage in a branching tree

This example uses a simplified 2D version of the
default branching L-System

Premise FFFA(1)

Rule 1 A(i)=[&F(i)A(i*0.5)]////[&F(i)A(i*0.5)]

angle 45

generations 6

Every time A is declared in rule 1, the value i (length)
is halved so each generation starts with a smaller
value.

Using Custom Values
In order to make an L-System easier to edit you can replace the variables in your rules with custom values
from the ‘Values’ menu. By default there are three of these, b, c and d, but there are options to add as many
more of them as you want, and supply your own letters for them. This can make it much easier to tweak the
settings of your L-System. It is a technique that is extensively used in ​The Algorithmic Beauty of Plants ​for their
trees. These trees are available in the Houdini presets menu, but in my examples I have added an extra menu
to tweak the values more easily.

Monopodial Tree
The Algorithmic Beauty of Plants p.56, figure 2.6, also shown by the Houdini preset "Monopodial Tree"

Premise A(1,10)

Rule 1 A(l,w)=F(l,w)[&(c)B(l*e,w*h)]/(m)A(l*b,w*h)

Rule 2 B(l,w)=F(l,w)[-(d)$C(l*e,w*h)]C(l*b,w*h)

Rule 3 C(l,w)=F(l,w)[+(d)$B(l*e,w*h)]B(l*b,w*h)

 Custom Values

b​ = contraction ratio trunk
e ​= contraction ratio branches
c​ = branching angle trunk
d​ = branching angle lateral axes
h​ = width decrease rate
i ​= divergence angle

For each tree below the rules are the same, only the values are changed.

b​ = 0.9
e ​= 0.6
c​ = 45
d​ = 45

h​ = 0.707
i ​= 137.5

b​ = 0.9
e ​= 0.9
c​ = 45

d​ = 50.6
h​ = 0.707
i ​= 137.5

b​ = 0.9
e ​= 0.8
c​ = 45
d​ = 45

h​ = 0.707
i ​= 137.5

b​ = 0.9
e ​= 0.7
c​ = 30
d​ = -30

h​ = 0.707
i ​= 137.5

Sympodial Tree
The Algorithmic Beauty of Plants p.59, figure 2.7, also shown by the Houdini preset "Sympodial Tree"

Premise A(1,10)

Rule 1 A(l,w)=F(l,w)[&(c)B(l*b,w*h)]//(180)[&(d)B(l*e,w*h)

Rule 2 B(l,w)=F(l,w)[+(c)$B(l*b,w*h)][-(d)$B(l*e,w*h)]

 Custom Values

b​ = contraction ratio 1
e ​= contraction ratio 2
c​ = branching angle 1
d​ = branching angle 2
h​ = width decrease rate

For each tree below the rules are the same, only the values are changed.

b​ = 0.9
e ​= 0.7
c​ = 5

d​ = 65
h​ = 0.707

b​ = 0.9
e ​= 0.7
c​ =10
d​ = 60

h​ = 0.707

b​ = 0.9
e ​= 0.8
c​ = 20
d​ = 50

h​ = 0.707

b​ = 0.9
e ​= 0.8
c​ = 35
d​ = 35

h​ = 0.707

Gravity (tropism)
Adding the variable T to an L-System adds gravity in the -Y direction. This will increase over the generations if
it is called with each generation. It can also be inserted into a branch so it only effects that branch

Premise=​ FA
Rule 1= ​A=​T​"[&FA]////[&FA]
Angle=​ 45
Step Size Scale= ​0.6
Generations=​ 10
Gravity= ​0

Premise=​ FA
Rule 1= ​A=​T​"[&FA]////[&FA]
Angle=​ 45
Step Size Scale= ​0.6
Generations=​ 10
Gravity= ​2​0

Premise=​ FA
Rule 1= ​A=​T​"[&FA]////[&FA]
Angle=​ 45
Step Size Scale= ​0.6
Generations=​ 10
Gravity= ​5​0

Premise=​ FA
Rule 1= ​A="[&​T​FA]////[&FA]
Angle=​ 45
Step Size Scale= ​0.6
Generations=​ 10
Gravity= ​20

Ternary Tree
The Algorithmic Beauty of Plants p.60, figure 2.8, also shown by the Houdini preset "Ternary Tree"

Premise F(0.5,1)A

Rule 1 A=TF(0.5,1)[&(c)F(0.5,1)A]/(b)[&(c)F(0.5,1)A]/(e)[&
(c)F(0.5,1)A]

Rule 2 F(l,w)=F(l*d,w*h)

 Custom Values

b​ = divergence angle 1
e ​= divergence angle 2
c​ = branching angle
d​ = elongation rate
h​ = width increase rate
T​ = tropism (gravity)

For each tree below the rules are the same, only the values are changed. The exception is the final tree which
is grown at an angle using the initial premise +(75)F(0.5,1)A. This allows T to pull the tree to one side instead
of directly downwards. It is then rotated back into an upright position using a transform node.

b​ = 94.64
e ​= 132.63
c​ = 18.95
d​ = 1.109
h​ = 1.732

T​ = 15

b​ =137.5
e ​= 137.5
c​ =18.95
d​ = 1.109
h​ = 1.452

T​ = 12

b​ = 112.5
e ​= 157.5
c​ = 22.5

d​ = 1.356
h​ = 1.653

T ​= 21

b​ = 180
e ​= 252
c​ = 36

d​ =1.07
h​ =1.529
T​ = 27.5

Premise​ = +(75)F(0.5,1)A

Input Geometry in L-Systems
The L-System node has three geometry inputs which allow you to hook up any piece of geometry and use it in
your L-System. J, K and M respectively. Any geometry connected to these inputs is created in the sequence
by these letters

This example uses the default L-System tree again.
It adds leaf geometry [&&J] before each occurance
of [B]. The brackets are used so that the pitch (&&)
rotates the leaves but doesn’t affect the rest of the
system. It also adds a berry geometry K at the end
of each branch.

Premise FFFA

Rule 1 A=!"[&&J][B]////[&&J][B]////[&&J]B

Rule 2 B=&FFFAK

angle 28

A plant generated by an L-system
The Algorithmic Beauty of Plants p.27, Figure 1.26

J K

Premise A

Rule 1 A=X+[A+]−−////[−−J]X[++J]−[A]++AK

Rule 2 X=FY[//&&J]FY

Rule 3 Y=YFY

angle 18

Generations 5

Stamping Geometry

You can use the stamp expression to influence the inputs to an L-System. The syntax to use is

stamp("/path/to/lsystem", "lsys",0)

The “lsys” variable can be changed inside the l-system using the parameters after the J, K or M symbols

J(s,x,a,b,c) etc The geometry is scaled by the s parameter (default Step Size) and stamped with
the values a through c (default no stamping). Stamping occurs if the given
parameter is present and the relevant Leaf parameter is set. The x parameter is not
used and should be set to 0.

So to change the parameters of the stamped input use eg.

J(0.1, 0, ”value for stamping”)

Note that the documentation suggests the following will work​ J(,,”value for stamping”)​ but in
practise this doesn’t create any geometry, which seems to be a bug.

Example using stamp expression to choose geometry

Input Geometry connected to inputs 0 to 3 of a switch node

The switch node is connected to input J of an L-System set up as shown
below. The ‘Select ‘Input’ parameter of the switch node has the
expression

stamp("../lsystem1","lsys",0)

The sequence here is very straightforward. For every generation a
straight line F is drawn upwards and 3 nodes B are branched off around
the trunk.
These nodes are then replaced with the input connected to J

The stamping selects which input of the switch node connected to J is
used. To determine the value connected to the third variable in J we use
the ‘t’ character which returns the number of iterations. This starts at 1 at
the top and descends to the last generation (21) at the bottom. We
divide t by a variable b of about 4.5 to give us a number between 1 and 4
(representing the 4 inputs) then subtract 1 to give us 0 to 3. Changing
the value of b in the values menu changes the positions at which the
leaf/flower types change.

Premise FA

Rule 1 A=AF//[+&B]//[&B]//[&B]

Rule 2 B=J(1, 0, t/b-1)

Step size 0.45

angle 48

Variable b 4.5 (try changing this)

Generations 21

Example using stamp expression to change colour
In this example we only have one geometry model, and we use stamping to change the colour.

The input flower has a colour node with the following
expressions for RGB:

R: 0.5+stamp("../lsystem1","lsys",0)/20

G: 0.7

B: 1

The l-system is very similar to above, except that the J third character
value is simply ‘t’ which is tweaked in the colour node to give an output
between 0 and 1, and the first (scaling) character of J also uses ‘t’ to
make the petals smaller as they ascend.

Premise FA

Rule 1 A=A"!F//[+&B]

Rule 2 B=J(0.5+t/10,0,t)

Step size 0.65

angle 48

Generations 21

Probability
Appending a colon followed by a fraction to the end of a rule determines how often that rule is applied
Eg.​ B=&FFFAK:0.75​ would replace B with &FFFAK only ¾ of the time. This is a good way to introduce more
natural looking dropoup to L-Systems.

This is a copy of the default L-System with
geometry leaves and berries, only this time the
second rule only executes in 75% of cases
(:0.75)
This gives a much more natural appearance.
Note that more than 25% of the foliage is
missing because some branches drop out
earlier on eliminating everything above them.

Premise FFFA

Rule 1 A=!"[&&J][B]////[&&J][B]////[&&J]B

Rule 2 B=&FFFAK:0.75

angle 28

In this version a second Rule is added
containing flower geometry and both rules are
given low probability

Rule 2 B=&FFFAK:0.45

Rule 3 B=&FFFAM:0.25

Changing ‘seed’ in the geometry menu will give a different random dropout

Example of probability from The Algorithmic Beauty of Plants
p.28
Stochastic L-systems

Premise F

Rule 1 F=F[-F]F[+F]F:0.33

Rule 2 F=F[-F]F:0.33

Rule 3 F=F[+F]F:0.33

angle 28

Generations 6

Conditionals

We can add a condition to an L_Systems rule so that it only executes when the condition is true.
The symbol for a conditional is a colon : after which the condition is given. For example

A:t<4=J
This would replace A with geometry input J only for the first 4 iterations

In this example there is a single leaf
geometry input (J)

There are two rules.

The first is used for the first iteration.
It places a single leaf at the end of a
short branch.

The second rule is used for all other iterations (ie.
generations). It places two leaves angled away
from the main branch.
Increasing the generations always adds more pairs
of leaves

Premise A

Rule 1 A:t>1=AF[+J][-J]

Rule 2 A:t==1=AH[J]

angle 60

2 Generations 4 generations

Conditional Edge Rewrite Examples from​ The Algorithmic Beauty of Plants p9 - p11.

Dragon_curve
Generations:​ 12
Premise:​ l
Rule1:​ l:t<b=l+r+
Rule2:​ r:t<b=-l-r
Rule1:​ l=F
Rule1:​ r=F
Angle:​90
Variable b:​ ch("generations") (ie. 12)

Sierpinski_gasket
Generations:​ 8
Premise:​ r
Rule1:​ l:t<b=r+l+r
Rule2:​ r:t<b=l-r-l
Rule1:​ l=F
Rule1:​ r=F
Angle:​60
Variable b:​ ch("generations") (ie. 8)

Bringing together Geometry Inputs, Custom Variables and Conditionals

 J(,,0)

J(,,1)

K(,,0)

K(,,1)

K(,,2)

Premise A(7)

Rule 1 A(i):i==7=FI(20)[&(60)∼J(0)]/(90)[&(45)A(0)]/(90)[&(60)∼J(0)]/(90)[&(45)A(4)]FI(10)∼K(0,0,0)

Rule 2 A(i):i<7=A(i+1)

Rule 3 I(i):i>0=FFI(i-1)

Rule 4 J(i)=J(i+1,0,(i+1)/t)

Rule 5 K(i)=K(i+1,0,(i+1)/15)

Generations 40

Context Sensitive L-Systems

From The Algorithmic Beauty of Plants p.30
A context-sensitive extension of tree L-systems requires neighbor Context in tree edges of the replaced edge
to be tested for context matching. 2L-systems use productions of the form a c → χ where the letter b
(called the strict predecessor) can produce word χ if and only if b is preceded by letter a and followed by c.

This can be used in Houdini if the option “Context includes Siblings” is turned on.
Note that the > and < signs don’t mean “greater than” or “less than”, they mean “comes after” or “comes
before”.

Example of Context sensitive leaf drawing
In this example, there are two conditions for drawing leaf geometry (J)
If B comes after A and before A, a leaf is drawn to the left
If A comes after B and before A, a leaf is drawn to the right
All As and Bs then become left or right angles lines

Premise BABAABBA

Rule 1 A<B<A=[---J] B

Rule 2 B<A<B=[+++J] A

Rule 3 A=-F

Rule 4 B=+F

angle 20

Generations 5

The result of these rules is that leaves are only drawn when the
direction changes and are always situated on outside curves.

Examples of branching structures generated using L-systems based on the results of Hogeweg and Hesper
The Algorithmic Beauty of Plants p.34

Generations:​ 25
Premise:​ FBFBFB
Rules:
A<A>A = A
A<A>B = B[+FBFB]
AA = B
AB = B
B<A>A = A
B<A>B = BFB
BA = A
BB = A
+ = -
- = +
Angle:​22.5

Generations:​ 30
Premise:​FBFBFB
Rules:
A<A>A = B
A<A>B = B[-FBFB]
AA = B
AB = B
B<A>A = A
B<A>B = BFB
BA = B
BB = A
+ = -
- = +
Angle:​22.5

Generations:​ 26
Premise:​FBFBFB
Rules:
A<A>A = A
A<A>B = B
AA = A
AB = B[+FBFB]
B<A>A = A
B<A>B = BFB
BA = A
BB = A
+ = -
- = +
Angle:​25.75

Generations:​ 26
Premise:​FAFBFB
Rules:
A<A>A = B
A<A>B = A
AA = A
AB = BFB
B<A>A = B
B<A>B = B[+FBFB]
BA = B
BB = A
+ = -
- = +
Angle:​25.75

Generations:​ 26
Premise:​FAFAFA
Rules:
BB = B
BA = A[-FAFA]
B<A>B = A
B<A>A = A
AB = B
AA = AFA
A<A>B = A
A<A>A = B
+ = -
- = +
Angle:​22.5

Phyllotaxis
Phyllotaxis refs to the arrangement of petals or seeds in a flower head. The key to this is the Fibonacci angle,
approximately equal to 137.5◦. The angle is the result of dividing a circle by the golden ratio.
The central illustration below gives the basic L-System rule used to create the pattern. The patterns to the left
and right demonstrate how much the pattern changes when the angle is changed by a fraction of a degree.

Premise:​ A(1)
Rule 1:
A(n) = +(​137.3​)[f(n^0.5)J]A(n+1)
Step Size: ​1
Generations: ​300

Premise:​ A(1)
Rule 1:
A(n) = +(​137.5​)[f(n^0.5)J]A(n+1)
Step Size: ​1
Generations: ​300

Premise:​ A(1)
Rule 1:
A(n) = +(​137.6​)[f(n^0.5)J]A(n+1)
Step Size: ​1
Generations: ​300

Sunflower
The sunflower uses a single rule to draw the seeds and petals. The only change is that the seeds become
petals as the generations increase, which is done using Conditionals

J

Premise A(0)

Rule 1 A(n) = +(137.5)["f(n^0.5)C(n)]A(n+1)

Rule 2 C(n) : n <= 440 = J

Rule 3 C(n) : 440 < n & n <= 565 = K

Rule 4 C(n) : 565 < n & n <= 580 = M(1,0,0)

 C(n) : 580 < n & n <= 595 = M(1,0,1)

 C(n) : 595 < n & n <= 610 = M(1,0,2)

 C(n) : 610 < n = M(1,0,3)

Step Size 1

Generations 625

 K

M(,,0)

M(,,1)

M(,,2)

M(,,3)

The same principle can be used to create flowerheads. In this flower the angle and size of the petals is
increased as they get further from the centre (as n becomes greater)

The & symbol in rule 2 is used to rotate the petals
outwards as the generations increase. Variable b is
linked to the total number of generations. This is also
used to grow the petals as they get further out.

Premise A(0)

Rule 1 A(n) = +(137.5)["f(n^0.5)C(n)]A(n+1)

Rule 2 C(n)=&(n*-180/b)J(0.5+(b-n)/b)

Step Size 1

Variable b ch("generations")

Generations 90

Creating Leaves from Surface Geometry
It is possible to use L-Systems to draw polygon surfaces, using the following commands:
{ Start a polygon

. Make a polygon vertex

} End a polygon

The Algorithmic Beauty of Plants contains several examples of surfaces built from polygons, and one of these
is integrated into the houdini L-System examples as ‘Cordate Leaf’

Cordate Leaf
The Algorithmic Beauty of Plants p.123, Figure 5.5

This is created by drawing polygon triangles and joining them up to form the shape of a leaf.

If we look at the turtle generated for each generation we can see that the rules add progressively longer lines
(lists of FFF), and join these up with progressively wider angles (lists of +++)

Premise [A][B]

Rule 1 A=[+A{.].C.}

Rule 2 B=[-B{.].C.}

Rule 3 C=FFFC

Angle 16

The results below show only the right side for simplicity ie. they ignore rule 2

Gen 0 [A]
Gen 1 [[+A{.].C.}]
Gen 2 [[+[+A{.].C.}{.].FFFC.}]
Gen 3 [[+[+[+A{.].C.}{.].FFFC.}{.].FFFFFFC.}]
Gen4 [[+[+[+[+A{.].C.}{.].FFFC.}{.].FFFFFFC.}{.].FFFFFFFFFC.}]

3 Generations 4 Generations 6 Generations 12 Generations

A family of simple leaves
The Algorithmic Beauty of Plants p.124, Figure 5.6

Premise {.A(0)}

Rule 1 A(i) = F(b,c)[-B(i).][A(i+1)][+B(i).]

Rule 2 B(i):i>0 = F(d,e)B(i-f)

Rule 3 F(s,r) = F(s*r,r)

Angle 60

generations 20

Variable Values Represent:

b = initial length - main segment
c = growth rate - main segment
d = initial length - lateral segment
e = growth rate - lateral segment
f = growth potential decrement

b = 5
c = 1
d = 1
e = 1
f = 0

b = 5
c = 1
d = 1
e = 1
f = 1

b = 5
c = 1
d = 0.6
e = 1.06
f = 0.25

b = 5
c = 1.2
d = 10
e = 1
f = 0.5

b = 5
c = 1.2
d = 4
e = 1.1
f = 0.25

b = 5
c = 1.1
d = 1
e = 1.2
f = 1

A Rose Leaf
From ​The Algorithmic Beauty of Plants p.126, Figure 5.8

Premise [{A(0).}][{C(0).}]

Rule 1 A(i) =
.F(b,c).[+B(i)F(f,h,i).}][+B(i){.]A(i+1
)

Rule 2 C(i) =
.F(b,c).[-B(i)F(f,h,i).}][-B(i){.]C(i+1)

Rule 3 B(i) : i>0 = F(d,e)B(i-1)

Rule 4 F(s,r)=F(s*r,r)

Rule 5 F(s,r,i) : i>1 = F(s*r,r,i-1)

Angle 60

generations 25

Variable Values Represent:

b = 5 : initial length - main segment
c = 1.15 : growth rate - main segment
d = 1.3 : initial length - lateral segment
e = 1.25 : growth rate - lateral segment
f = 3 : initial length - marginal notch
h = 1.09 : growth rate - marginal notch

Ferns and other Compound Leaves

From ​The Algorithmic Beauty of Plants p.129, Figure 5.11

b = apical delay (number of children on a frond, a whole number)
c = internode elongation rate (decrease in size of fronds)

Premise A(0)

Rule 1 A(i):i>0 = A(i-1)

Rule 2 A(i):i==0 = F(1)[+A(b)][-A(b)]F(1)A(0)

Rule 3 F(a) = F(a*c)

Angle 45

b = 0
c = 2
Generations = 9

b = 1
c = 0.5
Generations = 14

b = 2
c = 1.36
Generations = 18

b = 4
c = 1.23
Generations = 24

b = 7
c = 1.17
Generations = 30

Compound leaves with alternating branching patterns
From ​The Algorithmic Beauty of Plants p.130, Figure 5.12

b = apical delay (number of children on a frond, a whole number)
c = internode elongation rate (decrease in size of fronds)

Premise A(0)

Rule 1 A(i):i>0 = A(i-1)

Rule 2 A(i):i=0 = F(1)[+A(b)]F(1)B(0)

Rule 3 B(i):i>0 = B(i-1)

Rule 4 B(i):i=0 = F(1)[-B(b)]F(1)A(0)

Rule 5 F(a) = F(a*c)

Angle 45

b = 1
c = 1.36
Generations = 18

b = 4
c = 1.18
Generations = 29

b = 7
c = 1.13
Generations = 38

